
RPGLEDOC
Document Your Subprocedures and
Program Calls

RPGLEDOC
Document Your Subprocedures and
Program Calls
1
Installation
4
How it Works
5
Documentation Categories
6
Documentation Rules and Labels
6
Documentation Validation
7
The Database
8
Adding to the Process
9
Adding a New Label
10
Adding a New Documentation Table
10
Altering an Existing Table
10

Modern RPG applications consist of a multitude of subprocedures and programs – a lot more than there were in the traditional RPG applications. Although modern tools, such as the outline view in Remote System Explorer, can provide me with a list of callable subprocedures and programs, they cannot tell me exactly what the subprocedure/program does, what the possible values are for parameters or what the possible return values are.

Which leads to that terrible four lettered word – documentation. Yes, it all has to be documented and we all know how much RPG programmers like to write documentation.

This is a problem which has already been tackled in Java. JavaDoc is a facility whereby programmers put special comments in their code and the JavaDoc command is used to scan the code and documentation web pages from the comments.

Can the JavaDoc approach be used in RPG? By applying a few terms and conditions, of course it can. We can easily generate procedure documentation similar to that shown in Figure 1.

[image: image1.png]
Figure 1: Documentation generated for a subprocedure.

Installation

The RPGLEDOC library was created and save on a system at V5R3.

The first step is to install the RPGLEDOC library.

· Create a save file on the system

· FTP the downloaded RPGLEDOC.SAVF file to the save file (make sure you use binary mode)

· If you want to minimize any potential security issues, create a user profile RPGLEDOC (this is the profile that owns all of the objects in the RPGLEDOC library)

CRTUSRPRF USRPRF(RPGLEDOC) PASSWORD(*NONE)
TEXT('Owner Profile for RPGLEDOC')

· Restore the library RPGLEDOC from the save file

The next step is to create a documentation database. There are two ways in which you can handle this depending on how security is implemented on your system.

In the source physical file ALLSOURCE in the newly restored RPGLEDOC library you will find a source member named RPGLEDOCDB with a member type of SQLSRC. Copy the member RPGLEDOCDB to a member of your choice - I recommend naming the new member the same as the database schema you are about to create.

Edit the new member and find the two lines

CREATE SCHEMA <YOURSCHEMANAME> ;

SET SCHEMA = <YOURSCHEMANAME> ;

These are actually the first two SQL statements in the script. On both lines change <YOURSCHEMANAME> to the name of the schema you want to create e.g. if you were creating a schema named MYDOCDB the tow lines would read as

CREATE SCHEMA MYDOCDB ;

SET SCHEMA = MYDOCDB ;

Save the member and use the Run SQL Statements command to run the SQL script e.g.

RUNSQLSTM SRCFILE(MYLIB/MYSQLSRC) SRCMBR(MYDOCDB)

If you want to be a little looser with your security you may want to take a slightly different approach.

In Run SQL Scripts in Navigator or in STRSQL in a 5250 emulation session create the required schema e.g.

CREATE SCHEMA MYDOCDB ;

On a command line use the Change Library (CHGLIB) command to identify the default public access for any objects created in the schema

CHGLIB MYDOCDB CRTAUT(*CHANGE)

As before, copy the member RPGLEDOCDB to a member of your choice. This time delete the CREATE SCHEMA line and specify your schema name on the SET SCHEMA line. Save the script and execute it using the RUNSQLSTM command.

How it Works

The RPGLEDOC approach is loosely based on JavaDoc. Whereby JavaDoc generates HTML documents I decided to generate a database of documentation details and leaving it up to you to decide how you want to present the information: or you can just use the CGIDEV2 based web presentation layer provided.

One of the good things is that the only code that needs to be documented is the prototypes. Prototypes are what define the call interfaces and it is the call interfaces that we want to document.

But one of the other difficulties comes with determining the definition parameters and return values, especially when the definition (of parameters and return values) is based on LIKE and/or LIKEDS keywords. So the database must also store the definition of any of these standard structures that are the basis of further definitions.

The assumption is that the prototypes, standard data structures, stand alone fields and named constants to be documented are defined in copy members (and if they aren't they should be). The Generate RPGLE Documentation (RPGLEDOC) command, shown in Figure 2, is used to scan the specified copy members and generate the documentation database.

The parameters for RPGLEDOC are as follows:

· Include Members: specify up to twenty copy members to be scanned

· Defines: specify up to twenty condition names which may be used in the conditioning of the inclusion or exclusion of code in the copy members. In other words, these are condition names that would normally be specified using the /DEFINE compiler directive in RPG

· Generate Data Definitions: whether or not data definitions should be generated

· Generate Documentation: whether or not procedure documentation should be generated

· Perform Validation: whether or not procedure documentation should be validated

[image: image2.png]
Figure 2: The RPGLEDOC command.

Under the covers the RPGLEDOC command writes and compiles a program that includes the members and defines the condition names specified on the command. This program is then compiled to ensure that all required definitions (LIKE, LIKEDS etc.) are present. The generated compile listing is then used as the basis for the generation of the database contents.

Documentation Categories

A quick word about categories. I like to categorize my procedures (e.g. Utilities, messaging, getters, setters etc.) A procedure should belong to at least one category and may belong to multiple categories.

Documentation Rules and Labels

Time to have a look at the documentation itself. Figure 3 shows an example of the definition of a subprocedure along with the corresponding RPGLEDOC comments. It is from this source that the information shown back in Figure 1 was generated.

 //**/ @desc Retrieve product data. The data is restored from

 // multiple tables. The stock figure reflects any

 // pending orders.

 // @author Paul Tuohy

 // @return True if product was found

 // False if product was not found

 // @param Product Code

 // @param Structure of Product Data

 // @category application

 // @category getter

d getProductData...

d PR n

d productCode Const

d like(b_Product.productCode)

d productData likeDs(b_Product)

Figure 3: A prototype definition with RPGLEDOC labels

Each prototype is preceded by RPGLEDOC comments. RPGLEDOC comments are identified by a special identifier of ‘**/’ after the comment character (‘*’ in position 7 or ‘//’). RPGLEDOC comments are further identified by a number of Labels. An RPGLEDOC label is preceded by an ‘@’. A list of the valid RPGLEDOC labels and their meanings is shown in Figure 4.

	Label
	Description

	AUTHOR
	The author of the procedure

	CATEGORY
	The list of categories to which the procedure belongs.

	DEPRECATE
	Indicates the procedure that this procedure replaces

	DESC
	A description of what the procedure does. This should be a detailed description so that the reader clearly understands when they should use the procedure. It should not contain technical details of how the procedure works.

	PARAM
	A description of a parameter. As with the procedure description, this should leave the reader in no doubt as to the function of the parameter. Parameter tags are assumed to be in the same sequence as the parameters in the prototype (Also see Note 1).

	RETURN
	A description of the return value for a procedure. This description follows the same guidelines as the procedure and parameter descriptions.

Figure 4: RPGLEDOC Documentation Labels.

Descriptions of procedures, parameters and return values may be continued on multiple lines. The fact that a description is defined on multiple lines is ignored in the documentation generation process i.e. the description is parsed to one long field. Since the final objective is have this information displayed on a web page, descriptions may contain HTML tags such as <p></p> or
 to help with formatting.

Documentation Validation

Of course one of the banes of documentation is ensuring that everyone does it and everyone does it properly. We can at least ensure that everyone does it – we cannot account for everyone doing it properly. The optional validation provided by RPGLEDOC ensures the following:-

· A description is specified for the procedure

· An author is identified

· The procedure belongs to at least one category

· The return value is described (if present)

· A description is provided for each parameter

· Descriptions are not allowed for non-existent return values or parameters

Figure 5 shows an example of the generated validation report.

[image: image3.png]
Figure 5: The report generated by RPGLEDOC.

The Database

You may have multiple documentation databases. A documentation database is a schema and a script is provided to create a documentation database schema e.g. you might have a documentation database per application.

Use a library list to ensure that the RPGLEDOC library and the required database schema are present prior to running the RPGLEDOC command.

Figure 6 shows the tables in the database. Each table is defined with a primary key constraint (PRIMARY_ followed by the table name) and a corresponding index (the table name with a 1 appended). Foreign key constraints with cascade rules are used to ensure data integrity between tables.

	RPCATS
	Documentation Categories

	RPCONST
	Named Constants

	RPDSDALK
	Data structure subfields that are based on a LIKE or LIKEDS definition

	RPDSDATA
	Data structure subfields

	RPDSNAMES
	Data structures

	RPFIELDS
	Stand alone fields

	RPKEYWORD
	Procedure and parameter keywords

	RPLIKES
	Procedure parameters based on LIKE definitions

	RPPARMS
	Procedure parameters (parameter 0 is the return value)

	RPPROCCAT
	Procedure to Category X-Ref. Procedures should belong to one or more categories

	RPPROCS
	Procedures

	RPREPLACE
	Procedures that replace other procedures (deprecations)

Figure 6: Tables defined in the Documentation Database

There are also two views (RPPROCSV1 and RPPARMSV1) which are used to merge together information from multiple tables. There are also a number of indexes created to aid in the optimization of data access using SQL.

Adding to the Process

All of this is well and good but what if you need to track additional documentation labels? This may require an addition to an existing table (e.g. for a single label for a procedure) or the definition of a new table.

It will also require changes to the documentation generation program RP003A. The logic of the program is:

· Perform a sequential read of the source member and, for each procedure –

· Construct the documentation information in qualified data structures

· Validate the documentation elements

· Write the documentation information to the database

The main points to consider are:

· The start of a new procedure is indicated by a ‘**/’ identifier. This also indicates that the currently stored information should be validated and written.

· Documentation information is stored in qualified data structures. These data structures are externally defined based on the relevant documentation table. If there may be multiple values (as with parameters) then the data structure is defined as a data structure array.

· Each line input is processed differently depending on whether it is a comment line or a D specification.

· A comment line is scanned to determine if it has a document tag (identified by a ‘@’) or if it is a continuation of a document tag (as with descriptions).

Adding a New Label

These are the steps to take if you are adding a new documentation label.

· In the procedure DocTag, add the new label to the DocTagsDS data structure. It is important that the tag is placed sequentially in the list. Also change the initialization value of NumDocTags to reflect the number of elements defined in the array.

· Add logic to the NewDocTag procedure to set relevant values based on the new label.

· Add logic to the ContinueTag procedure if the information for the new label can be continued on multiple lines.

· Add logic to the ValidProc procedure if the new label warrants any validation (e.g. a required document tag).

Adding a New Documentation Table

It may be that your documentation required the addition of a new table e.g. to identify a list of amendments. If such is the case, proceed as follows:

· Define the table. It should be a non-keyed table. Define any constraints required and define an index for the primary key (the index is what you should use in RP003A)

· If this is documentation for a procedure there should be a cascade delete foreign key constraint with procedures table RPPROCS

· Add a new qualified data structure based on the external definition of the new table using the LIKEREC keyword (as per the existing data structures). Define the data structure as an array if there can be multiples of the item and add a count field (refer to the definition of the HoldProcX data structure and the CatsCount field)

· Add logic to the ClearProc procedure to clear the new data structure and, if necessary, the count field

· Complete the process for adding a new label as described in the previous section.

· Add logic to the AddProc procedure to add information to the new table

Altering an Existing Table

It may be that your documentation required the addition of a new label to an existing table e.g. a simple label equivalent to Author. If such is the case, proceed as follows:

· Add the column to the required table

· Complete the process for adding a new label as described in the previous section.

