
Externalize Database Processing V2

The purpose of this code is to demonstrate the concept of externalized database processing. Back in 2007 I had provided a simpler example of the externalization process which related to a single job. You might want to have a look at the article "Externalize Database Processing" (March 2007, article ID 20830 at SystemiNetwork.com), which also provides an overview of the concept of externalization and why you might want to do it.

Version 2 of the externalization routines provides a number of “enhancements”

· A technique, using user spaces, to allow for the use of the routines in a non-persistent (web) environment.

· New routines for retrieving SQL lists, quick getters and getting and setting data as all character

· Most importantly, a program that will generate all of the code for you. This uses CGIDEV2 for the interface.

A soon to be published article in System i Network (I will notify all via e-mail when the article is published) covers the structure and basic concepts of the new routines.

What follows are instructions on how to install everything and a run through the generator. But first of all, there are a few terms and conditions <g>

· In the database, each table contains the definition of a column named changeNo. This column is used as part of an internal record-locking process to ensure that an update or delete request is updating the correct/original version of the row. The change number is incremented every time a row is updated.

· Externalization subprocedures will be contained in one or more modules in one or more service programs. Each service program must contain a copy of a special module. The module name is unimportant, but I identify this module by the name FILE00A throughout the rest of this document.

· FILE00A contains private (or internal) subprocedures for externalization handling, including pointer logic, managing user spaces, time outs, record locking, file error handling [e.g., getInstance(), putInstance(), getHandle(), releaseHandle(), setHandleLastUsed()]. These subprocedures contain the "hard work" and shouldn't be exported from the service program - they should be called only by the externalization subprocedures. Many of these internal subprocedures perform callbacks to subprocedures in externalization modules. You needn't be concerned about the contents of FILE00A. It contains encapsulated subprocedures called from an externalization module.

· Each externalization module includes the member PFILESTD. This member includes D specs and code common to every externalization module. Although the code may be the exact same in each module, the compiled version will produce different results - for example, a data structure based on an external file definition .

· Each externalization module includes the member STDHSPEC. This member includes any required header specification for modules in the file procedures service program.

· Although externalization subprocedures for a table may be coded in more than one module, my preference is to use one module unless the size becomes too cumbersome to maintain.

Installation

The EXTERNALDB library was created and saved on a system at V5R3.

This application makes use of CGIDEV2. It is assumed you have the version of the CGIDEV2 library from the www.easy400.net web site installed. If you are using the later IBM version of CGIDEV2 it is recommended that you re-bind the service programs and programs in the EXTERNALDB library.

1. The first step is to install the EXTERNALDB library.

· Create a save file on the system

· FTP the downloaded EXTERNALDB.SAVF file to the save file (make sure you use binary mode)

· If you want to minimize any potential security issues, create a user profile RPGLEDOC (this is the profile that owns all of the objects in the RPGLEDOC library)

CRTUSRPRF USRPRF(EXTERNALDB) PASSWORD(*NONE)
TEXT('Owner Profile for EXTERNALDB')

· Restore the library EXTERNALDB from the save file

The following steps are only required if you are going to use the generator.

2. The next step is to restore the document directory. This is the directory that contains all of the documents used in the application.

· Create a save file on the system

· FTP the downloaded EXTERNALFS.SAVF file to the save file (make sure you use binary mode)

· Restore the directory /ExternalDBDemo from the save file. This directory will contain two subdirectories – externalDBDdoc and externaldb.

3. You now need to decide on an Apache server instance to be used. You can either use an existing server instance or configure a new one (see http://www.systemideveloper.com/quicktutorials.html for video tutorials on how to configure an Apache server).
You will need to add the following directives to the server configuration (httpd.conf).

ScriptAliasMatch ^/db/(.*) /qsys.lib/externaldb.lib/$1.PGM

<Directory /qsys.lib/externaldb .lib>

 Order Allow,Deny

 Allow From all

</Directory>

4. Copy the directory externalDBDdoc from the directory /ExternalDBDemo to the document root directory for the server instance you will be using e.g. copy it to /www/myserver/htdocs

5. Restart your server and you should be able to access the generator using http://yourserver/db/CGen001a

A Note on Security

If you are going to be using the generator, please ensure that the profiles QTMHHTTP and QTMHHTP1 have authority to all of the objects in the directories and libraries restored.

What is in the EXTERNALDB Library?

EXTERNALDB contains all of the code required for the database externalization routines – including the generator. The source physical files are:-

· UTILITY. Contains utility routines used by just about everything

· TESTPROCS. A source physical file used to test the creation process

· FILEPROCS. Contains an example of an externalized database service program. This service program is used by the sample application

· QAPPSRC. Contains the sources for sample programs that utilize the externalization routines in the FILEPROCS service program

· GENERATE. Contains the sources for the GENERATE service program. These are the routines used to produce a source module from a template

· QGENSRC. Contains source members for the generation programs

· TEMPLATES. Contains the templates used by the generator

· WRKSOURCE1 and WRKSOURCE2. Two source physical files used by the generator

Familiarize Yourself with the Code

To get an idea of what goes on, have a look at the programs GAPP001, GAPP002, CAPP001 and CAPP002 in QAPPSRC. Although very simple, these are all fully functioning programs.

GAPP001 and GAPP002 are two green-screen “Work With” programs.

CAPP001 and CAPP002 are two CGIDEV2 “Work With” programs.

You may then want to have a look at FILE01A and FILE02A in FILEPROCS. These are the corresponding externalization modules for the CAPP and GAPP programs.

What is Needed?

Apart from the terms and conditions quoted previously, you will need the following:-

· The module FILE00A. You can name it what you want.

· A source physical file for the externalization modules. This should contain the copy members, PFILESTD, STDHSPEC and the include file for all prototype members. A sample source physical file (TESTPROCS) is provided.

· A binder language source member to create the service program. Remember, the contents of FILE00A should not be exported from the service program. The source member FILEPROCS in the source physical file FILEPROCS will give you a idea of what you need.

· At run time you will need two data area – SESSEXPIRE and STORAGELIB. SESSEXPIRE identifies how long (in minutes) a client can hold on to an item. STORAGELIB identifies the library in which user spaces are stored.

Templates

The source physical file TEMPLATES should contain two members – TEMPLATE2 (the module) and TEMPLATE2P (prototypes and definitions). These are the template members used by the generator.

If you are going to use your own templates, the only rule is that the prototype/definitions member must be the name of the module with a 'P' appended.

You might want to have a look at the templates as you read the following description.

The templates contain two special types if identifiers:-

Insertion identifiers (begin with #&#& and end with &#&#) indicate that the generator inserts special code at this point. The identifiers are left in place so that new items may be inserted into a new member.

Replacement identifiers (begin with #% and end with %#) indicate that the generator replaces the identifier with a value.

Note that the prototype/definitions member starts with a number of MetaData entries. It is important that these are left in place – it is the mechanism whereby the generator can add to an existing module.

The following table lists the insertion identifiers:-

	Identifier
	Description

	PROCNAME
	Procedure name entered for new_, release_, delete_ etc.

	PROCDESC
	Corresponding description entered with PROCNAME

	DATABASE
	The file and library name of the file used in the module

	NAMESLIST
	A list of all generated names (getters, setters, structures

	LASTCURSOR
	The last cursor no. used by an SQL get list

	DSINSERT
	Definition of based data structures (in TEMPLATE2P)

	
	Definition of data structures using LIKEDS (in TEMPLATE2)

	KEYSPARAM
	Description of key fields passed as parameters

	KEYSINPUT
	Definition of key fields passed as parameters

	GETTERS
	Definitions for Getter Prototypes (in TEMPLATE2P)

	
	Definition for Getters (in TEMPLATE2)

	SETTERS
	Definitions for Setter Prototypes (in TEMPLATE2P)

	
	Definition for Setters (in TEMPLATE2)

	KEYTOSTORE
	Eval key fields from KEY DS to STORE DS

	STORETOKEY
	Eval key fields from STORE DS to KEY DS

	INPUTTOKEY
	Eval key fields passed as parameters to KEY DS

The following table lists the replacement identifiers:-

	Identifier
	Description

	PROCNAME
	Procedure name entered for new_, release_, delete_ etc.

	PROCDESC
	Corresponding description entered with PROCNAME

	AUTHOR
	Author name entered

	SOURCEPF
	The name of the source physical file used for includes

	FILEF
	The name of the file being processed

	FORMAT
	The name of the record format of the file being processed

	SERVEMBR
	The name of the include member for the service program prototypes

	HANDLESPACE
	The name of the user space for handles (the name entered with HD appended)

	DATASPACE
	The name of the user space for data (the name entered with DT appended)

There are other replacement identifiers but they are used directly within the generator routines and are not included in the templates.

Using the Generator

To access the generator, enter the URL of your server followed by /db/CGEN001A.

Generating an Externalization Module

The page shown in Figure 1 should be displayed. The main points to note are:-

Generate routines for database

Identify the database to be used in the externalization module.

· The name of the index or keyed logical file to be used on the F spec of the module

· The library the index or keyed logical file is in

· The author's name is for documentation purposes

Generate source members

Identify the source members affected by the generator.

· The name of the code member to be created or added to

· The name of the prototype member to be created or added to

· The name of the source physical file in which source members are placed

· Whether or not an include directive, for the generated prototype member, is added to an include member for the service program (see next item)

· The name of the include member for the service program. This must be specified, regardless of whether or not an include is being appended

User spaces

The name provided for the user space will result in the creation of two user spaces - one for the handles (HD appended) and one for the data (DT appended).

Options

· Specify the template to be used. Templates should be in the source physical file TEMPLATES and should consist of two source members – one for code generation (the name specified here) and one for prototypes and base definitions (the name specified here with a 'P' appended)

· Indicate whether quick getters should be generated.

· Indicate whether external getters should be generated. External getters apply to column getters and return the requested value as a parameter as opposed to a return value. This is primarily to enable the procedures to be called from Java and PHP.

Figure 1: Starting to generate an externalization routine[image: image1.png]
Generation Options

After a moment (the generator has a little bit of work to do in the background), you are presented with a page consisting of a number of tabs. Simply click on the required tab and fill in the data as required.

Base Data

The Base Data tab, shown in Figure 2, allows you to identify the name used for the subprocedures to instantiate, put, delete, and release an item. Standard subprocedures will be created where the names of the subprocedures will be the name you specify here, preceded by new_, put_, delete_ and release_.

The description is used in the comments for the subprocedures.

You are not prompted for a Primary Procedure Name or Description if you are adding to an existing module.

Figure 2: The Base Data Tab[image: image2.png]
Getter/Setter

The Getter/Setter tab, shown in Figure 3, allows you to select columns for the generation of individual column getters and setters.

You can change the name of the subprocedures (the displayed name is generated from the column description).

You may not generate getters or setters for key columns or the Change Number column.

Quick getters and/or external getters will be generated based on the options taken on the initial selection screen.

Figure 3: The Getter/Setter Tab[image: image3.png]
DS Getter/Setter

The DS Getter/Setter tab, shown in Figure 4, allows you to specify up to five getters/setters based on a data structure format and identify the columns to be included in the format.

For each of the five sub tabs you can specify:-

· Whether or not to generate a getter

· Whether or not to generate a setter

· Whether or not the format should have all columns specified as character data, which may be useful in a web environment. The generated routines will automatically check for any casting errors when copying data back to its original format.

· The name for the getters/setters. As with the column getters/setters, quick getters and/or external getters will be generated based on the options taken on the initial selection screen.

· The name for the based data structure. When required, this structure will be referenced with LIKEDS.

· Select the required columns to be included for getters and/or setters. Setters may not be specified for key columns and the Change Number column may not be included.

[image: image4.png]Figure 4: The DS Getter/Setter Tab

SQL Lists

The SQL Lists tab, shown in Figure 5, allows you to specify up to five subprocedures to perform an SQL based multiple row fetch.

For each of the five sub tabs you can specify:-

· Whether or not to generate a list procedure

· The name for the list procedure.

· The name for the based data structure. When required, this structure will be referenced with LIKEDS.

· Select the required columns to be included in the list

Figure 5: The DS Getter/Setter Tab[image: image5.png]
And Finally

The Finish tab simply presents you with buttons to Continue or Cancel. You will then be presented with a confirmation screen that lists everything to be generated and the option to Continue, go back and make some changes or Cancel.

Although you now have a member that should compile, remember that you may still need to make changes to the validData() and setDefaults() subprocedures, make changes to the embedded SQL, or add non-database columns to some of the formats (along with the corresponding changes to any getters and/or setters).

